OSG Features to Support Machine Learning

Mats Rynge OSG User Support

OSG All Hands Meeting 2020

Overview

Many OSG sites now provide access to GPUs

 GPU software stacks are generally more complex, both at system level and user level

Singularity integration

Singularity images

GPU Availability (varies over time!)

Count	Resource	GPU	CUDAVersion	CUDACapability
=====			========	
40	CMSHTPC_T3_US_NotreDame_gpu	Quadro RTX 6000	10.2	7.5
6	CMSHTPC_T3_US_NotreDame_gpu	Tesla V100-PCIE-32GB	10.2	7.0
95	FNAL_WILSON	Tesla K40m	10.2	3.5
1	Omaha	GeForce GTX 1060 6GB	10.2	6.1
5	Omaha	Quadro RTX 5000	10.2	7.5
1	Omaha	Quadro RTX 8000	10.2	7.5
3	Omaha	Tesla K20m	10.2	3.5
1	Omaha	Tesla K40m	10.2	3.5
3	Omaha	Tesla P100-PCIE-16GB	10.2	6.0
2	Omaha	Tesla V100-PCIE-16GB	10.2	7.0
14	Omaha	Tesla V100-PCIE-32GB	10.2	7.0
12	OSG_US_NEWJERSEY_ELSA	GeForce GTX 1080 Ti	10.1	6.1
12	SDSC-PRP	GeForce GTX 1080	11.0	6.1
4	SDSC-PRP	GeForce GTX 1080 Ti	11.0	6.1
46	SDSC-PRP	GeForce RTX 2080 Ti	11.0	7.5
77	SU-ITS	GeForce GTX 750 Ti	11.0	5.0

GPU specific machine attributes

```
CUDACapability = 7.5
```

CUDAClockMhz = 1620.0

CUDAComputeUnits = 72

CUDADeviceName = "Quadro RTX 6000"

CUDADriverVersion = 10.2

CUDAECCEnabled = true

CUDAGlobalMemoryMb = 22699

CUDAOpenCLVersion = 1.2

The compute capability of a GPU determines its general specifications and available features: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities

Table 14. Feature Support per Compute Capability

Feature Support	Compute Capability					
(Unlisted features are supported for all compute capabilities)	3.5, 3.7, 5.0, 5.2	5.3	6.x	7.x	8.0	
Atomic functions operating on 32-bit integer values in global memory (<u>Atomic Functions</u>)	Yes					
Atomic functions operating on 32-bit integer values in shared memory (<u>Atomic Functions</u>)	Yes					
Atomic functions operating on 64-bit integer values in global memory (<u>Atomic Functions</u>)	Yes					
Atomic functions operating on 64-bit integer values in shared memory (<u>Atomic Functions</u>)	Yes					
Atomic addition operating on 32-bit floating point values in global and shared memory (atomicAdd())	Yes					
Atomic addition operating on 64-bit floating point values in global memory and shared memory (atomicAdd())	No Yes					
Warp vote functions (Warp Vote Functions)	Yes					
Memory fence functions (Memory Fence Functions)						
Synchronization functions (Synchronization Functions)						
Surface functions (Surface Functions)						
Unified Memory Programming (<u>Unified Memory Programming</u>)						
Dynamic Parallelism (CUDA Dynamic Parallelism)						
Half-precision floating-point operations: addition, subtraction, multiplication, comparison, warp shuffle functions, conversion	No Yes		'es			
Tensor Cores	No		Yes			
Mixed Precision Warp-Matrix Functions (Warp matrix functions)	No Y				es	
Hardware-accelerated async-copy (<u>Asynchronously Copy Data from Global to Shared Memory</u>)	No Ye					
Hardware-accelerated Split Arrive/Wait Barrier (Split Arrive/Wait Barrier)	No				Yes	
L2 Cache Residency Management (Device Memory L2 Access Management)	No Y					

--nv / CUDA / OpenCL

Singularity documentation: Commands that run, or otherwise execute containers (shell, exec) can take an --nv option, which will setup the container's environment to use an NVIDIA GPU and the basic CUDA libraries to run a CUDA enabled application. The --nv flag will:

- Ensure that the /dev/nvidiaX device entries are available inside the container, so that the GPU cards in the host are accessible.
- Locate and bind the basic CUDA libraries from the host into the container, so that they are available to the container, and match the kernel GPU driver on the host.
- Set the LD_LIBRARY_PATH inside the container so that the bound-in version of the CUDA libraries are used by applications run inside the container.

What this means for the OSG user: when the job starts up inside the Singularity container, the environment is fully set up, with a configured LD_LIBRARY_PATH containing the host libraries

Base Images

OSG open pool maintains a set of Singularity base images, which you may either use directly or derive your own image from:

/cvmfs/singularity.opensciencegrid.org/opensciencegrid/

osgvo-el7-cuda10:10.1

osgvo-el7-cuda10:10.2

osgvo el7 cuda10:latest

tensorflow-gpu:2.2-cuda-10.1

tensorflow-gpu:2.3-cuda-10.1

tensorflow apu:latest

See documentation for a list and links to container definitions:

https://support.opensciencegrid.org/ support/solutions/articles/12000073 449-available-containers-list

Summary

- 1. GPUs are now widely available in the OSG open pool
- 2. Match jobs against attributes/capabilities, not specific models
- 3. Use provided Singularity images to get started

Documentation:

https://support.opensciencegrid.org/support/solutions/articles/5000653025-gpu-jobs

Available Containers:

https://support.opensciencegrid.org/support/solutions/articles/12000073449-available-containers-list

Questions?

support@osgconnect.net